2 research outputs found

    Resilience Assessment: A Performance‐Based Importance Measure

    Get PDF
    The resilience of a system can be considered as a function of its reliability and recoverability. Hence, for effective resilience management, the reliability and recoverability of all components which build up the system need to be identified. After that, their importance should be identified using an appropriate model for future resource allocation. The critical infrastructures are under dynamic stress due to operational conditions. Such stress can significantly affect the recoverability and reliability of a system‘s components, the system configuration, and consequently, the importance of components. Hence, their effect on the developed importance measure needs to be identified and then quantified appropriately. The dynamic operational condition can be modeled using the risk factors. However, in most of the available importance measures, the effect of risk factors has not been addressed properly. In this paper, a reliability importance measure has been used to determine the critical components considering the effect of risk factors. The application of the model has been shown through a case study

    Industrial Equipment’s Throughput Capacity Analysis

    Get PDF
    Throughput capacity (TC) is defined as the total amount of material processed or produced by the system in the given time. In practice, full capacity performance for industrial equipment is impossible because the failures are affected and cause a reduction. Therefore, failure interruptions, especially critical ones (bottlenecks), must be detected and considered in production management. From the point of production view, the bottleneck has the lowest production or performance. Most of the previous works used the availability and related importance measures as performance indicators and prioritization of subsystems. However, these measures cannot consider system production in their prioritization. This paper presents a bottleneck detection framework based on system performance and production capacity integration. The integrated approach is used to assess the loading and hauling subsystems of Golgohar Iron Mine, Iran. As a result of the analysis, the hauling subsystem identifies the system’s bottleneck
    corecore